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Abstract —A rigorous spectral-domain formulation for a su-
perconducting stripline or microstrip transmission line with a

multiple-layer dielectric substrate is presented. The formulation
models the strip conductor as a surface current with an equiva-
lent surface impedance, where the surface impedance is approxi-

mated in closed form when the strip is either much thinner or
mucli thicker than a penetration depth. In either case the

surface impedance is related to the complex conductivity of the

material, which is calculated from a two-fluid model. Results are

presented to show the slow-wave propagation and attenuation

along both microstrip and stripline packages in a realistic

multiple-layer configuration, which accounts for the field pene~
tration into the superconducting ground planes.

I. INTRODUCI-ION

sTRIPLINE and microstrip transmission lines are the

most common wave-guiding structures used in mi-

crowave and millimeter-wave systems. Loss along these

transmission lines is due to the ohmic losses of the con-

ductors and dielectric. When constructed of normally

conducting materials, the loss for typical designs is due

primarily to the ohmic losses of the conductors, particu-

larly at high frequencies. These losses are significantly

reduced when superconducting materials are used. There-

fore, for long delay lines, large corporate antenna feeds,

resonators, and matching circuits, devices for which con-

ductor losses are especially deleterious, high-temperature

superconducting materials represent potential alterna-

tives to the normal metals.

To use high-TC superconductors in high-frequency sys-

tems it is important that their special properties be deter-

mined and properly accounted for in the design. In the

electrical characterization of these superconductors,

stripline and microstrip transmission lines and resonators
are commonly used. From measurements of the propaga-

tion characteristics and the quality factors of these de-

vices, constructed either partially or totally of the super-

conducting material under test, we can determine many
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of the rmcroscopic electrical parameters of the supercon-

ductor, such as the surface resistance, conductivity, criti-

cal temperature, magnetic field strength, and field perpe-

tration depth. This requires correlating the results of

analytical and numerical models of the experiment with

the measured results. Therefore, it is crucial to have

accurate mode k for the experimental test structures to

facilitate the t~sting and development of empirical mate-

rial models for the superconductors and to accurately

determine the macroscopic electrical parameters of the

materials.

Previous investigators have analyzed superconducting

microstrip transmission lines [1]–[3]. These investigations

have not, however, addressed the stripline structure, and

strip width effects have not been explicitly discussed. We

will present al rigorous electromagnetic model for the

multiple-layer stripline and microstrip from which com-

plex modal propagation constants are calculated. This

model will be used to demonstrate the slow wave propa-

gation along superconducting transmission line structures,

a result of a large fraction of energy being stored in the

superconducting film as the kinetic motion of paired

electrons (kinetic inductance). We will also show the

functional dependence of the propagation constant/phase

velocity on the width of the conducting strip and the

effective field penetration depth of the superconductor r.

II. !$PECTRAL-DOMAIN FORMULATION

Our analysis of the multiple-layer stripline and mi-

crostrip is based on standard spectral-domain techniques.

A cross-sectional view of the general transmission line

structure is shown in Fig. 1. Au electric surface current

density, J(r), is shown embedded arbitrarily within layer
m in this figuure for generality, aithough in practice Ihe

strip would typically be at an interface. The total electric

field in the mth layer generated by l(r) on the condtrct-

ing strip is written as

E(X, y,z)=f~@-x’,y- y’,z, zO)”.l(x’,y ’)ah’dy ’

where the strip is

located at z ==ZO,

(1)

assumed to be infinitesimally thin,

and ~ is the multiple-layer electric
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Fig. 1. General multiple-layer transmission line structure.

field dyadic Green’s function. ln order to simplify the

analysis, we assume that the layered structure is infinite

along the x and y coordinates, so that the original

three-dimensional analysis is reduced to a one-dimen-

sional problem in the spectral domain by utilizing a two-

dimensional Fourier transform in x and y. Applying the

Fourier-convolution theorem [4], the components of the

transformed electric field are expressed as

fix(k.x, k,, z)=d..y(k., ky, z,zo)z(kx, ky)

+Gy(~x?q, z,% )L(~x7~,) (2)

~Y(~x7kY7z) =~Yx(k.Kl~Y7zJzo) J.(k..k Y)

+~yy(kx, ky, z>zo )-ww,) (3)

and

~z(kx, ky, z)=~,x(kx,k,,z>zo) ~(kx,k,)

+ Gzy(kx, kY, z,zo)fY(kx, kY). (4)

The tilde ( - ) over a variable denotes the Fourier trans-

form of that quantity. We will assume that the fields

propagate in the positive x direction with a propagation

constant kxo; thus, the surface current density, J, has the

following form:

J(x7Y) = [~x(y)f+~,(y)j]e-~~~~x (5)

where

kxo=~–ja (6)

and .JX(Y ) and JY( y) represent the transverse variations of
the x- and y-directed currents, respectively. Transform-

ing this current and substituting it into (2)–(4) reduces

the two-dimensional current transforms to a one-

dimensional transform. Taking the inverse Fourier trans-

form yields

Im. .
~.. (-x>Y,z) = ~/_mGxx(~xo, ky>z>zo)J. (ky)

. e –j(k.ox+kyy) dky

“fy(k,)e –Xkx[]x+kYY)dk
y (7)

1/m~Y.(klokYz,zo)J.(kY)Ey(x, Y,z)=fi _m

. ~–j(kxo-~+k,y) &
Y

fY(kv)e –](klox+kyy) dky

and

1/mGzx(kxo,kY7z7zo)L(kY)Ez(x, Y,z)=~ _m

(8)

. e–j(k.ox+k,)) dky

+; J:mGzy(kxo7kyzjzo)

.~(ky)e –.r(k.al+k,Y) dky , (9)

III. DERIVATION OF INTEGRAL EQUATIONS

A. Thin Conducting Strips

For very thin superconducting or normally conducting

strips, where the fields within the strip are approximately

uniform, the tangential components of the electric field at

the strip are given by

Ef(x, y,zo)=Z:J(x, y) (lo)

where Z; is the surface impedance of the conductor, with

units Q/square, J is the equivalent surface current den-

sity, and the subscript t denotes the components tangent

to the strip (i.e., the .x and y components). The equiva-

lent surface current, J, is given by

J= ~’JO dz = JL,t (11)

where Jo is the uniform volume current density within the
strip and t is the thickness of the strip. For a perfect

conductor Z: is equal to zero. For nonperfect conductors,

Z; is approximated as [2]

z:= ‘t EL, i=xory

J

(12)

‘JL,,dz ‘t
o

where m is the conductivity of the strip conductor. This

conductivity is real for normal conductors and complex

(~= ul – j~z) for superconductors. Equation (12) is ap-
propriate when the field variation within the strip is small.

To derive an integral equation in terms of the unknown

surface current, J, we enforce the boundary condition
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(10) by testing it with a vector testing function ~(y):

~~E,(x, y,zo)@(y) dy=Z:frn J(x, y)” F(y)dy.
—cc —m

(13)

By alternately defining F(y) as J:( Y)i and J: ( y)j, and

substituting (7) and (8) into (13), we obtain the following

set of coupled integral equations:

J:m[~xx(~xo>~,jzo) -z;] fl(ky)i:(k,)dky

+/:m~xy(~xo~y?zo)fy(~y)c(~y)~~y=o (14)

and

fm [Gyy(kxo, ky, zo)– z:]@y)jf(k, )dky
—w

+J:mGyx(k.okyzo)fx(ky)f;(ky)~ky=o. (15)

In these expressions ~* is the conjugate of ~, and

Gij(kXo, k,, Zo) is used to denote 6,,(kXo, kY, Zo, Zo).

B. Thick Conducting Strips

For thicker strips, where the thickness, t, is greater

than a few skin depths, i5, or effective penetration depths,

Ae~~(T), the approximate boundary condition on the sur-

face of the strip is given by

E,(x, y,z’’~)=z&’b(x,y) (16)

where Jf and Jb are the surface currents on the top and

bottom surfaces of the strip and Z, is the classical plane

wave surface impedance:

E,,
z.=

[1

jmp 1/2
._ i=xory.

J

(17)

‘.To, dz w
o

In this expression Jo decreases exponentially with dis-

tance z into the conductor. If the thickness of the strip is

small compared with the other dimensions of the struc-

ture, z ~ and z b, the positions of the top and bottom

surfaces of the strip, respectively, can be approximated as

Z. (the middle of the strip). Thus, the currents J t and Jb

are collapsed into an equivalent surface current J(J = Jf

+ Jb). However, a difficulty in deriving an integral equa-

tion in terms of J directly from (16) is that the right-hand

side does not involve the equivalent current J, but rather

J’ and Jb, depending upon whether the observation point

is located on the top or bottom of the strip. Only in the

special case where the current on the bottom (top) side of

the strip is much greater than that on the top (bottom),

where J is approximately equal to the current on the

bottom (top), can we obtain an integral equation by

directly enforcing the boundary condition (16) on the

bottom (top) surface of the strip.
In order to model the strip as an equivalent surface

current at ZO, an effective surface impedance, Z;, must

1555

be used. The boundary condition then becomes

Et(x, y,zo)=Z:J(x, y) (18)

where Et is the field produced by the equivalent surface

current, J.

To determine the effective surface impedance, the

complex power dissipated by the equivalent current sheet

should be the same as that for the actual strip conductor.

The complex power for the equivalent current sheet is

I:=:@ (x, y). J*(x, y)dS (19)

where S denotes the surface of the equivalent current

sheet. Using (118), this becomes

PC=: Z:~J(x, y). J*(x, y)dS. (20)
s

Next, consider the actual strip conductor having different

surface currents on the top and bottom surfaces, of the

strip. If it is assumed that the functional form of the

current is the same on the top and bottom surfaces of the

strip, with only an amplitude difference, the top and

bottom surface currents are related as

J’(x, Y)=@J(x, Y) (2,1)

Jb(X, Y)=(l–4)J(X, Y) (22)

where ~ is the ratio of the current on the top surface of

the strip to the total surface current.

dissipated by the actual strip is then

Pc=:Z,~J’(.x, y)”J’’*(x, y)dS
s

+ :Z~~Jb(x, y)
s

which may be written as

The complex power

Jb*(x, y)dS (23)

P(, =:pZ,~J(x, y)”J*(x, y)dS (24)
s

where

p=#2+(l–@)2. (25)

Comparing (20) with (24), the effective surface impedance

is determined as

z:= pz, . (26)

For a general structure, one could obtain the factor p

using a quasi-static technique or some other method. IFor

the special case of a symmetric stripline, the currents on

the top and bottom of the strip are equal, so that + = 0.5

and thus p ==0.5. Another limiting case is a microstrip

transmission line where the strip is close to the ground

plane. In this case IJ’I << [J*I, so that @= O and p =1,

An integral equation for the unknown equivalent sur-

face current, ~, is derived by enforcing (18) using a testing
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function, F(y), obtaining

/mE,(x,y,zo)” F(Y)dY=Pz.Jm J(x,Y)” F(Y)dY.
—m —m

(27)

By alternately defining F(y) as .J~( y)i? and ,1~( y)j and

substituting (7) and (8) into (27), we obtain the following

set of coupled integral equations:

/:m[e.y.y(~.oky> zo)-Pzs]Jx(ky)~:( k,)dky

+J:m~y.(k..oky2 zo)I(ky)E(ky)~ky=o. (29)

These expressions are consistent with those obtained di-

rectly from (10) when p = 1 and Z: = Z,.

h this investigation we will assume that the width of

the conducting strip is small compared with the wave-

length; thus, the y component of the surface current will

be neglected. With this assumption, (28) and (29) are

reduced to the following integral equation:

f~ [GXz(kXo, k,v, zo)- pZ,]fX(ky)~(kY)dkY = O.
—.

(30)

Basic to this analysis is the derivation of the dyadic

Green’s function, ~, which represents the electric field in

the mth layer caused by an arbitrarily oriented, unit

strength Hertzian electric dipole, also in the rnth layer.

For this discussion, from (30), we note that only the .i&

component is required. To formulate the electric field

Green’s function, Maxwell’s equations are transformed,

via a pair of Fourier transformations, into a pair of scalar

transmission line equations. These transmission line ex-

pressions are solved by enforcing the boundary conditions

at each interface separating the layers. This approach,

often referred to as the spectral domain immittance

method, has been presented in detail by others [6], [~] and

will not be presented here. In the Appendix, Gxx is

presented in its final form.

IV. METHOD OF MOMENTS

The integral equation (30) is solved using the method of

moments. In this procedure the transverse current varia-

tion J,(y) is approximated by

J.(Y) = f %Jxn( Y) (31)
n=l

where the c~’s are constant expansion coefficients and the

.l,~’s are expansion (basis) functions. Using this expansion,

(30) is approximated as

f c~~:~[&X(kXo, kY, zo)- ~z,]
71=1

“f;m(~y)fxn(ky) dky =0, mc~,z,... , N (32)

where ~’,(k ~) is the Fourier transform of the expansion

function .lXt( y ). This equation is rewritten in the following

matrix form:

2C=0 (33)

where each element of the N x N matrix ~ is defined as

Z~.=~m [c..(k.o,k,,zo) -pz,]~n(k,)~..(k, )dk,
—’x

(34)

and C is an N X 1 vector containing the expansion coeffi-

cients. For nontrivial solutions of C, the matrix ~ must be

singular. Hence, the propagation constant kXo is deter-

mined by solving

det[~]=O. (35)

The solution of this equation is obtained by employing a

complex root finding algorithm, such as the secant method

or Muller’s method. The solutions for k,, are assumed to

produce fields which are bounded in the directions trans-

verse to the direction of propagation; thus, the search is

restricted to the region k&~X < kXo, where kg:, is the

largest wavenumber for the guided-wave modes of this

background structure [81. This condition implicitly as-

sumes that there is no loss (i.e., real wavenumbers). A

small amount of loss results in complex wavenumbers

which are simply perturbations of the lossless values;

therefore, the prescribed search region still provides an

appropriate start for the root finding algorithm. This

condition also ensures that the poles of ~xX lie along the

imaginary kY axis in the Iossless case; hence, the integra-

tion path in (34) is performed along the real kY axis.

Once the modal propagation constant has been found, we

determine the normalized current distribution by assign-

ing one of the current coefficients (CZ) equal to unity and

solving for the remaining C.’S by solving the resulting

(N – 1) X (N – 1) matrix equation which results from (33).
In this investigation, dominant mode propagation is

assumed, so that .lX( y ) is an even function about y = O.

The basis function is chosen as a pair of symmetric pulses;

with

(>

(Y. -~/4N)<lYl <( Yn+w/4N)~Xn(y) = ~’” othe~ise

(36)

where w is the width of the strip and y. = w(2n – 1)/4N.
The Fourier transform of these offset pulses is given by

()cos(y.kY) wkY
~.(k,) = ~k ,4 sin ~ . (37)

Y

Because of reciprocity, the ~ matrix is symmetric. Fur-

thermore, because the basis functions are defined as pairs

of single pulses, the elements of the ~ matrix can be
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Fig. 2. Superconducting transmission lines and equivalent model geometries used in the present analysis: (a) microstrip

and (b) stripline.

easily constructed from the 2N distinct Z~. values which

are obtained from (34) when using single pulse functions

for JX.( y) and J.m( y). These 2N distinct values corre-

spond to the 2N distinct separations A y = (n – l)w /(2N)
(~=l.. c2N) between centers of the individual pulses.

V. TWO-FLUID MODEL

Since the exact mechanisms for high-temperature su-

perconductivity have yet to be conclusively determined,

there are no macroscopic theories which describe the

electrical properties of these materials below their critical

temperature, T=. The models which are most commonly

used for the low-temperature materials, the Mattis–

Bardeen equations and the two-fluid model, have been

applied to the high-temperature superconductors with

varying degrees of success. At the present time, the sim-

pler, two-fluid model seems to be more applicable to

these new materials in weak magnetic fields, and will be

used in this presentation. In our discussion, the magnetic

fields are assumed to be weak enough that the flux is

excluded from the interior of the superconductor (super-

conducting state). This model is readily extended, for

slightly stronger magnetic fields, into the mixed state

(partial penetration of magnetic flti) by adjusting the

model parameters. However, for stronger magnetic fields,

such that the superconductor is well within the mixed

state, the simple two-fluid model breaks down. In this

region, for high-TC superconductors, an accurate model

has not been developed.

The complex conductivity obtained

model is expressed as

a=an(:)4-’(@w~:ff(o))(’

from the two-fluid

- (T\ TC)4) (38)

where a. is associated with the normal state conductivity

at TC and Acff (T) is the effective field penetration depth

as a function of temperature, T, in degrees kelvin. There

are wide variances for these model parameters from sam-

ple to sample, and the temperature and frequency charac-

teristics of these quantities have not been conclusively

determined. The effective penetration depths are gener-

ally greater than calculated London penetration depths

for the high-TC materials owing to irregularities such as

crystalline anisotropy and misalignment, grain bound-

aries, impurities, and other phases of the superconducting

material. The effects of other loss mechanisms, such as

grain boundary losses and residual losses, are often in-

cluded in o.. IIespite these uncertainties the two-fluid

model is still a powerful empirical tool and gives impor-

tant qualitative results.

VI. NUMERICAL RESULTS

We will demonstrate the effectiveness of our geneml

stripline and microstrip model by considering the slow

wave propagation of the dominant quasi-TEM modes

along these structures. The geometries that we will con-

sider are shown in Fig. 2. These structures are used since

they are nearly identical to the microstrips and striplines

that are commonly used to experimentally determine th~e

electrical properties of thin-film superconductors. In these

test structures, the superconducting thin films are de-

posited on several substrates, which are then sandwiched

together, as shown in the figure, to produce the final

transmission line. On occasion, normal conductors (e.g.

Cu, Au, and Lig) or low-temperature superconductors

(such as Nb) are used. In these situations, two-sided
deposition is possible and the substrate materials are
often different from those for the high-TC superconduc-
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tors. The formulation presented in the previous sections

is capable of analyzing these multiple-layer transmission

lines. In Fig. 2 we show diagrams of actual stripline and

microstrip geometries, with strip conductors of finite

thickness, t., alongside the models for these geometries

used in this analysis. In these model geometries the strip

is represented by an equivalent surface current, J, of

width w as discussed previously. From extensive compar-

isons with rigorous solutions for infinitely wide, finite

thickness strip models, we have determined that the

proper location for the surface current, J, is such that the

distances between the ground planes and the strip sur-

face, b in Fig. 2(a) and bz and b~ in Fig. 2(b), are

maintained. These modeling requirements are particu-

larly important for very thin transmission line structures.

Examples of the comparison with infinitely wide strip

models will be shown later. In addition, for the remainder

of our discussion we will assume that the thickness of

each superconductor layer is equal to t; therefore, tg =

t, = t.

To simplify our present discussion, we will neglect all

the losses associated with the dielectrics in the transmis-

sion line. It is true that for good superconducting thin-film

devices the total loss in the actual structure is often

dominated by the losses of the dielectric. For these exam-

ples, however, we are primarily interested in determining

the phase velocity of the dominant mode, which is only

weakly dependent upon this additional loss. In these

examples, the phase velocity is computed as VP= OJ/@,

where P is the real part of the complex propagation

constant kXO.

For the examples to be presented, we have determined,

through extensive numerical experimentation, that it is

necessary to use only a single pulse basis function to

represent the transverse variation of the current for nar-

row strips. Furthermore, in these examples, the supercon-

ducting strips are very thin; therefore, Z: defined by (12)

is used in (30) with p = 1. Unless otherwise specified,

the parameters for the two-fluid model will be those

for a typical l~ser ablated YBa2Cu30T thin film, where

A~ff(0) = 1500 A, u.= 2 X 105 S/m, and TC=90 K. Also,

the temperature will be assumed to be 70 K and the

substrate materials are assumed to be LaA103 with a

dielectric constant of 23.

To begin, we will compare the slow wave propagation

results obtained with our rigorous spectral-domain analy-
sis for a thin superconducting microstrip transmission line

(Fig. 2(a)) with those obtained by Swihart’s infinitely wide
strip model [1]. For this example, the width of the strip, w,

is equal to 10’3 m and the substrate thickness is equal to

the thickness of the superconducting ground plane and

strip (b = t). The normalized phase velocities as a func-

tion of layer thickness, t, obtained from these models are

shown in Fig. 3. The computed phase velocities are nor-

malized by the factor c/~, where c is the velocity of

light in free space and c, is the dielectric constant of the

substrate material, which is 23. This figure clearly demon-

strates the slowing of the phase velocity of the dominant

Microstrip
1

0.1

0.01----
1.OE-9 1.OE-8 1.OE-7 1.OE-6

Layer Thickness, t (m)

Fig. 3. Comparison between present spectral-domain analysis and infi-
nite-strip-width model of Swihart [I] for a superconducting microstrip
transmission line. Model parameters: b = t, w = 10–3 m, and c, = 23

(Fig. 2(a)).

microstrip transmission line mode caused by the kinetic

inductance associated with the superconducting current.

As the dimensions of the structure and the thicknesses of

the superconducting layers decrease, the fractional

amount of magnetic energy stored in the superconductors

increases, thereby, decreasing the phase velocity. The two

models agree very well up to t = 10-7 m, where the

results start to diverge. This separation is due, primarily,

to two effects. First, the microstrip is dispersive; thus the

effective dielectric constant (phase velocity) of the struc-

ture, neglecting the kinetic inductance effects, varies with

strip width, w. This effect is not included in Swihart’s

model. Second, the surface impedance Z: given by (12),

used to model the material characteristics of the thin strip

in the spectral-domain formulation, starts to break down

when the fields within the strip depart substantially from

uniform. This occurs as the thickness of the strip ap-

proaches the effective penetration depth, A~ff (T):

Aeff(~) = Aeff(o) [l-(m)’] -1’2, (39)

For this example (T/ TC= 70 K/90 K and Aeff(0) =

1500 ~) Aeff(70 K)= 2.2X 10-7 m.

In Fig. 4 the effects of varying the width of this mi-

crostrip line are presented. We notice that the strip width

does affect the phase velocity, but these effects are due

primarily to the line dispersion, which is not related to the

conducting materials. This effect is manifest as the lateral

displacement of the individual responses. The spreading

of the curves as the layer thickness is decreased is a result

of the different kinetic inductance contributions for the

strips of different width. For this geomet~ (b << w), it is

readily apparent that the phase velocity of the structure is
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MicroStrip

,i’. ,ll

0.011 : ‘:’’’” : “’1’’” ,

1.OE-9 1.0E8 i.oE-7 1.OE-6

Layer Thickness, t (m)

Fig. 4. Effect of strip width on the normalized phase velocity

(uPfi/c) for the high-Tc superconducting microstrip line of Fig. 3.

Model parameters: b = t and c,= 23.

Microstrip

0.01’ ‘;’’’’” ‘ “:’::’ ‘ “’::J
1,OE-9 I.OE-Q 1.OE-7 I.OE-O

Layar Thcknasa, t (m)

Fig. 5. Effect of strip width on the normalized phase velocity

(uPfi/c) of the microstrip used for Fig. 4 with a pEC strip (Z, = O)

and a high-Te ground plane. Model parameters: b = t and ●, = 23.

a very weak function of the width of the microstrip line.

ln order to separate the effects of the superconducting

strip and the superconducting ground plane on the “phase

velocity, consider the plots shown in Figs. 5, 6, and 7. To

generate these plots, the microstrip geometry of the previ-

ous example (Figs. 3 and 4) is used with the following

modifications: for the responses shown in Figs. 5 and 6,

the strip is a perfect electric conductor (PEC, Z,= O),

while the ground plane remains a superconductor, and for

0.01-.-—
1.OE-9 1.OE-8 1.OE-7 1.0)3+6

Layer Thieimess, t (m]

Fig. 6. Effect of strip width on the normalized phase velocity

(uPfi/c) of the microstrip used for Fig. 4 with a PEC strip (Z, = O)

and a high-TC ground plane. Model parameters: b = 5 x 10– 9 m and
●r = 23.

1

0.1

0.01
1.OE-9 1oOE-S 1.OE-7 1.OE+O

Layar Thckneaa, t (m)

Fig. 7. Effect of strip width on the normalized phase velocity

(uP~/c) of the microstrip used for Fig. 4 with a thin high-TC strip and

a PEC ground plane. Model parameters: b = t and e, = 23.

Fig. 7, the strip is a thin superconductor and the ground

plane is a PEC, As we see from Fig. 5, the kinetic
inductance contributions from the superconducting

ground plane CIOvary appreciably with strip width. Tlhis

results in .a decreasing phase velocity with increasing strip

width. For this geometry (w/ b >> 1), the sensitivity of tlhe

phase velocity to the PEC strip width is related to tlhe

penetration of the fields through the superconductor into



1560 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 39, NO. 9> SEPTEMBER 1991

the dielectric backing the ground plane. For wide strips,

the response agrees with that predicted by the infinitely

wide strip model [1]; however, as the strip width decreases

the effects of the penetration through the ground plane

decrease. This is demonstrated in Fig. 6, which shows the

phase velocity for the microstrip geometry used for Fig. 5,

except that the substrate thickness is fixed at 5 X 10 – 9 m.

As the thickness of the superconducting ground plane is

increased the phase velocity increases, as expected; how-

ever, the dependence upon the strip width decreases. For

thick ground planes (t > A.ff ), the only width effect is,

apparently, that due to dispersion. Also notice that the

resulting phase velocities are significantly faster than those

for the corresponding completely superconducting mi-

crostrip (Fig. 4). However, when only the strip is super-

conducting, as shown in Fig. 7, the phase velocity is nearly

independent of the strip width, and agrees well with that

predicted by the infinitely wide strip model [1]. Therefore,

we conclude that for extremely thin (b < A.ff) microstrip

transmission lines, for which w/b >>1, the dependence

of the phase velocity on the strip width is significant only

when there is peneti-ation through the ground plane.

When the ground plane is PEC, there is essentially no

variation with the str;p width for these wide strips. Since

this width dependence is related to the penetration

through the ground plane, we expect that larger penetra-

tion depths will cause the phase velocities in Figs. 4 and 5

to increase even more with decreasing strip width. Also,

for these microstrip lines, the phase velocity increases as

the strip width decreases, which is opposite to the behav-

ior exhibited when using narrower strips on thicker sub-

strates. This effect will be discussed later using a stripline

example.

In Fig. 8, we demonstrate how the effective penetration

depth affects the phase velocity of the microstrip line

used in the previous examples. For this example, the strip

width is taken to be 10’4 m. As these results indicate, the

phase velocity of the dominant mode along an extremely

thin microstrip line is a strong function of A.ff (T). This

property is often used to determine Aeff from transmis-

sion line measurements [3], [9]. From the previous results,

we observe that the effect of the strip width is small for

these thin structures, where b < ~e~~and w/b s> 1; there-

fore, only small errors will be produced if it is not ac-

counted for in the determination of A ~ff.

In Fig. 9, we compare the slow wave propagation re-

sults obtained from our spectral-domain analysis of a thin

superconducting stripline transmission line (Fig. 2(b)) with

those obtained by using the transverse resonance method,

which is based on transmission line techniques similar to

those discussed in the Appendix, to rigorously model the

stripline with an infinitely wide center strip of finite

thickness (Triplate model). The transverse resonance

method is used to find the dominate odd TM mode

propagation constant, from which the phase velocity is

obtained [10]. For this comparison, the width of the strip

is equal to 1X10-3 m, bz = b~ = 1.5t, and bl = b4 = 20

roils (5.1 X 10’4 m). The dielectric constant for the sub-

1

0.1

0.01

Microstrip

1.OE-9 1.OE-8 1.OE-7 1.OE-6

Layer Thickness t (m)

Fig. 8. Effect of Aeff(T) on the normalized phase velocity (uPfi/c)

for the high-TC superconducting microstrip line of Fig. 4. Model parame-

ters: b = t, ●r= 23, and w = 10–4 m.

Stripline
1

0.01
1.OE-9 1.0E41 1.OE-7 1.OE-6

Layer l%iclm~ t (m)

Fig. 9. Comparison between present spectral-domain analysis and infi-
nite-strip-width model (Triplate model) for a superconducting stripline
transmission line. Model parameters: bz = b~ = 1.5t, bl = bi = 20 roils,
w = 10-3 m, and ~, = 23 (Fig. 2(b)).

strates and ground plane backing layers is 23. This figure

shows’ the slowing of the phase velocity as the layer

thickness is decreased, and it also demonstrates the excel-

lent agreement between our stripline model and the rig-

orous model for the stripline with an infinitely wide,

finite-thickness center conductor.

The results of Figs. 4–8 for the microstrip are repeated,

in Figs. 10– 14, for a similar stripline transmission line
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Stripline
1

“.”-

1.0E4 1.0E8 1.0E7 1.OE-6

Layer Thickness, t (m)

1

0.1

g

, ..,.

Layer Thickness, t (m)

Fig. 10. Effect of strip width on the normalized phase velocity Fig. 12. Effect of strip width on the normalized phase velocity

(upfi/c) for the high-TC superconducting stripline of Fig. 2(h). Model (IJpfi/C) for the stripline used for Fig. 10 with a PEC strip (Z.== O)

parameters: b2 = b~ = 1.5t and c,= 23. and high-TC ground planes. Model parameters: bz = b~ = 7.5x 10 – g m
and e, = 23.

Layer Thiikneas, t (m)

1

0.1

0.01--—
1.OE-9 1.OE-6 1.OE-7 1.OE-6

Fis. 11. Effect of strip width on the normalized phase velocity
Layer Thickness, t (m)

(LJ~~/c) for the stripline used for Fig. 10 with a PEC str’iP (z. = o) Fig, 13. Effect of strip width on the normalized phase veloci~

and high-TC ground planes. Model parameters: bz = b3 = 1.5t and
e, = 23.

(uPfi/ c) for the stripline used for Fig. 10 with a thin high-TC strip and

PEC ground planes. Model parameters: bz = bq = 1.5t and ~,= 23.

(Fig. 2(b)). For this stripline, b~ = bs = 1.5t, where t is the

thickness of the superconducting ground planes and strip,

and b ~= b~ = 20 roils. The only apparent difference be-

tween the microstrip and stripline responses is that the

stripline has very little dispersion; therefore, the phase

velocity, neglecting the effects of the kinetic inductance,

does not change with strip width, w, unless there is

penetration through the ground planes (as in Figs. 11 and

12). Also, the phase velocities for the stripline are slightly

slower than those of the microstrip, owing to the addi-

tional superconducting ground plane.
A difficulty presently associated with obtaining such

slow phase velocities in the laboratory is associated with

the construction of high-TC sup~rconducting microstrips

and striplines of such small dimensions. The commonly

used LaA103 substrates are very brittle and must be on

the order of 10–20 roils thick to survive the necessary
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Fig. 16. Effect of strip width on the normalized attenuation constant

(a /kO) for the high-Tc superconducting stripline of Fig. 2(b). Model
parameters: bz = bq = 20 mds and c,= 23.

Fig. 14. Effect of A,ff(T) on the normalized phase velocity ( rPfi\c)

for the high-TC superconducting stripline of Fig. 10. Model parameters:

b2 = bg = 1.5t, e,= 23, and w = 10-4 m.

Stripline
1.1 ~ I

Stripline
1.1

1 ---- 1
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Fig. 15. Effect of strip width on the normalized phase velocity

(UP~/C) for the high-TC superconducting stripline of Fig. 2(b). Model

parameters: bz = b~ = 20 roils and .s, = 23.

Fig. 17. Effect of Aeff(T) on the normalized phase velocity (uPfi/c)

for the high-TC superconducting stripline of Fig. 2(b). Model parame-
ters: bz = bq = 20 roils, C, = 23, and w = 10–4 m,

mechanical stresses received in the deposition process

and in the device construction. Infinite-width strip models

predict a negligible amount of slowing for transmission
lines of these dimensions. However, as the strip width is

reduced, substantial reductions in the phase velocity oc-

cur. This is demonstrated in Fig. 15 for a stripline with

dimensions bl = bz = b~ = bd - b = 20 roils (5.1 X 10-4 m)

and superconducting ground planes and strip thicknesses

equal to t. The substrate is assumed to ‘be LaA103 (~, =

23). (For the remainder of this section we will present

results only for striplines; however, the results are directly

applicable to similarly constructed microstrip lines.) The

corresponding attenuation constants, normalized by the

free-space wavenumber, kO, are shown in Fig. 16. In this

example the phase velocity is a very strong function of the

strip dimensions, particularly for the cases where w/b <<

1. For these thicker structures the effect of penetration

through the ground planes is minimal. Also, as expected,
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Stripline
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Fig. 18. Effect of A#’) on the normalized attenuation constant
(a /kJ for the h@-T. swrconducting stripline Of Fig. Xb). Model
parameters: b2 = b3 = 20 roils, 6, = 23, and w = 10-4 m.

Stripline

j 0.6

: 0.5

1!“d 0.4

!j 0.3

z 0.2

0.1

n
iOE-9 1.OE-8 1.OE-7 1.OE-6

Layer Thickn% t (m)

Fig. 19. Comparison of normalized phase velocity (UDfi/ c) for the

stripline of Fig. 15 having either high-TC superconducting or copper
ground planes. Model parameters: bz = b?= 20 mik E.= 23, M’ = 10’4

m, and Um =5.8x107 S/m. For both cases the strip thickness is equal

to t. For the superconducting case, the ground plane thickness is t, and
for the copper case, the ground plane thickness is fixed at 20 roils.

the attenuation constant increases as the strip width de-

creases. Again, recall that dielectric losses have been
neglected in these examples. The corresponding plots for

a fixed strip width (w = 10 – 4 m) and variable A~ff are

shown in Figs. 17 and 18. Appreciable changes in the

phase velocity occur for the range of A.ff shown, and the

attenuation increases dramatically as the penetration

depth increases.
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StriPline
1.OE-2 T ,’
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Z?
,,,,,, ,,,
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1.OE-9 1.0B8 1.OE-7 1.OEM

Layer Thickness, t (m)

Fig. 20. Comparison of normalized attenuation constant (a/ ko) for
the stripline of Fig. 15 having either high-TC superconducting or copper
ground planes. Model parameters: b2 = b3 = 20 roils, e, = 23, w =
10-4 m, and UCU= 5.8 X 107 S/m. For both cases the strip thickness is
equal to f. For the superconducting case, the ground plane thickness is
f, and for the copper case the ground plane thickness is fixed at 20 milk.

The dependence of the phase velocity on the electrical

characteristics of the strip, for w/b <<1, is demonstrated

by comparing the w = 10-6 m response in Figs. 15 and 16

with that for the equivalent stripline with the supercon-

ducting grouncl planes replaced by 20-mil-thick copper
(m= 5.8 x 107 S/m) ground planes. This comparison is

shown in Figs. 19 and 20. Note that the phase velocity is

effectively independent of the ground plane characteris-

tics for this st]ripline geometry since w/b <<’1; yet, the

attenuation constant increases by nearly an order of mag-

nitude owing to the copper ground planes. For such a

narrow strip, assuming that the strip and the ground

planes have the same surface resistance, the relative ccm-

tribution to the total loss is much higher for the strip than

it is for the ground planes. However, since in this example

the surface resistance of the superconductor is much

smaller than that of the copper, the use of copper ground

planes increases the total loss dramatically.

VII, CONCLUSIONS

We have presented a rigorous spectral-domain formula-

tion for the analysis of arbitrary multilayered stripline and

microstrip transmission lines. This formulation is used to

determine the complex modal propagation constants of

the structure, from which the phase velocity, attenuation
constant, and Q of the transmission line can be deter-

mined. Although derived in general, these techniques are

applied to analyze transmission lines constructed either

totally or partially of superconducting materials. The

characteristics of the superconductors are incorporated

into the analysis via the two-fluid model. Several numeri-
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cal examples are presented which demonstrate slow wave

propagation along superconducting microstrip and

stripline transmission lines. We observed how field pene-

tration through the superconducting ground planes may

have an influence on the phase velocity when the separa-

tion between the strip and the ground planes is less than

A,ff and much less than the strip width. For thicker

substrates, particularly when the strip width is smaller

than the strip to ground plane separation, the effects of

field penetration through the ground planes are minimal.

We have also demonstrated that it is possible to achieve

significant slow wave behavior for thick-substrate trans-

mission lines by using sufficiently small strip widths.

This formulation is sufficiently general to accurately

model actual stripline and microstrip transmission lines

used to characterize high-temperature superconducting

thin films. By correlating these modeling results with

measurements, we can determine many of the macro-

scopic electrical parameters and develop improved mod-

els for the high-TC materials.

AppENDIx

Using the spectral-domain immittance method [6], [7],

we obtain the A? component of the electric field dyadic

Green’s function for an arbitrarily oriented, unit strength

Hertzian electric dipole, assuming that the source and

observation points are in the same layer (mth layer), as [8]

dXx(z) = – ~GvTM(z, z’)– ~GvE(z, z’) (Al)
t t

where k; = k: + k;. The voltage Green’s functions d ‘“

and ~vTM are given as follows (with superscripts TE and

TM suppressed):

Gv(z, z’) = ~(e-jkz” Iz-z’I + (j;(z, z’)) (Ac2)

where

Q:( Z, z’) = # (r~e-jk2~[(’+’’)-2’fll
m

+r; .le –jkZm12Zm.1 –(Z+Z’)1 + zr:r;_l

. ~-j2~,m(zm-~-zm)cos [~zm(z – z’)]) (A3)

and

I)m = 1– r:r; _~e–j2~Z~fzm-l-zJ (A4)

with kZ~ = (k; – k~)llz, where kn is the wavenumber in

layer m. The reflection coefficients r; and r; are given

by

z; – Zmr:=
z:+zm’

m=l,2, ””. ,M (A5)

and

Z;–zm+l
r:=

Z;+zm+l’
m=l,2,. ... M (A6)

where M is the total number of layers. From transmission

line theory, the impedances Z: and Z: are given by

m= M–l, M–2,. .”, 1 (A7)

and

Z:_ ~+ jZ~ tan @n
Z;=z

‘Zn+jZ&_ltan @n’
m= 2,3,... ,M (A8)

where @n = k,~(z~ _ ~– Zn). The wave impedances Zw =

Z~E or Z~M are given by

k
z;M – ‘“ (A9)

U cm

and

zTE _ ‘pm .
m k

(A1O)
Zm
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