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Abstract —A rigorous spectral-domain formulation for a su-
perconducting stripline or microstrip transmission line with a
multiple-layer dielectric substrate is presented. The formulation
models the strip conductor as a surface current with an equiva-
lent surface impedance, where the surface impedance is approxi-
mated in closed form when the strip is either much thinner or
much thicker than a penetration depth. In either case the
surface impedance is related to the complex conductivity of the
material, which is calculated from a two-fluid model. Results are
presented to show the slow-wave propagation and attenuation
along both microstrip and stripline packages in a realistic
multiple-layer configuration, which accounts for the field pene-
tration into the superconducting ground planes.

I. INTRODUCTION

TRIPLINE and microstrip transmission lines are the

most common wave-guiding structures used in mi-
crowave and millimeter-wave systems. Loss along these
transmission lines is due to the ohmic losses of the con-
ductors and dielectric. When constructed of normally
conducting materials, the loss for typical designs is due
primarily to the ohmic losses of the conductors, particu-
larly at high frequencies. These losses are significantly
reduced when superconducting materials are used. There-
fore, for long delay lines, large corporate antenna feeds,
resonators, and matching circuits, devices for which con-
ductor losses are especially deleterious, high-temperature
superconducting materials represent potential alterna-
tives to the normal metals.

To use high-7, superconductors in high-frequency sys-
tems it is important that their special properties be deter-
mined and properly accounted for in the design. In the
electrical characterization of these superconductors,
stripline and microstrip transmission lines and resonators
are commonly used. From measurements of the propaga-
tion characteristics and the quality factors of these de-
vices, constructed either partially or totally of the super-
conducting material under test, we can determine many
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of the nmiacroscopic electrical parameters of the supercon-
ductor, such as the surface resistance, conductivity, criti-
cal temperature, magnetic field strength, and field pene-
tration depth. This requires correlating the results of
analytical and numerical models of the experiment with
the measured results. Therefore, it is crucial to have
accurate models for the experimental test structures to
facilitate the testing and development of empirical mate-
rial models for the superconductors and to accurately
determine the macroscopic electrical parameters of the
materials.

Previous investigators have analyzed superconducting
microstrip transmission lines [1]-[3]. These investigations
have not, however, addressed the stripline structure, and
strip width effects have not been explicitly discussed. We
will present a rigorous electromagnetic model for the
multiple-layer stripline and microstrip from which com-
plex modal propagation constants are calculated. This
model will be used to demonstrate the slow wave propa-
gation along superconducting transmission line structures,
a result of a large fraction of energy being stored in the
superconducting film as the kinetic motion of paired
electrons (kinetic inductance). We will also show the
functional dependence of the propagation constant /phase
velocity on the width of the conducting strip and the
effective field penetration depth of the superconductor.

II. SpecTrAL-DOMAIN FORMULATION

Our analysis of the multiple-layer stripline and mi-
crostrip is based on standard spectral-domain techniques.
A cross-sectional view of the general transmission line
structure is shown in Fig. 1. An electric surface current
density, J(r), is shown embedded arbitrarily within layer
m in this figure for generality, although in practice the
strip would typically be at an interface. The total electric
field in the mth layer generated by J(r) on the conduct-
ing strip is written as

E(x,y,z) =f[5(x —x,y=y,2,20) J(x',y")dx' dy’
(1)

where the strip is assumed to be infinitesimally thin,
located at z =z, and G is the multiple-layer electric
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Fig. 1. General multiple-layer transmission line structure.

field dyadic Green’s function. In order to simplify the
analysis, we assume that the layered structure is infinite
along the x and y coordinates, so that the original
three-dimensional analysis is reduced to a one-dimen-
sional problem in the spectral domain by utilizing a two-
dimensional Fourier transform in x and y. Applying the
Fourier-convolution theorem [4], the components of the
transformed electric field are expressed as

E (k,,ky,2)=G, (k. k,, z,20) T (ky. k)
+ny(kx’ky’z’zo)jy(kx’ky) (2)
Ey(kwky’Z):éyx(k.t7ky’27ZO)J;(kx’ky)
+G, (ky,k,,2,20) 0, (K, k) (3)
and
E (ke k,,2)=G. (ke k,,z,20)] (k. k,)
+ G, (ko ke, z,20) 0 (ki k). (4)

The tilde ( ~) over a variable denotes the Fourier trans-
form of that quantity. We will assume that the fields
propagate in the positive x direction with a propagation
constant k ,; thus, the surface current density, J, has the
following form:

J(x,y) = [T(y) £+ T, () §]e o0 (%)

where

kx(] = B - J a (6)
and J,(y) and J (y) represent the transverse variations of
the x- and y-directed currents, respectively. Transform-
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ing this current and substituting it into (2)—(4) reduces
the two-dimensional current transforms to a one-
dimensional transform. Taking the inverse Fourier trans-
form yields

1 o ~
E_V(X,Y,Z)=Ef_ Gxx(kxo’kY’Z’ZO)Jx(ky)
.e—v‘(kxox+kyy) dky

1w
+_2_,7_T</;OOG—“.V(kx07ky,Z,ZO)
'j;,(ky)e_f(kxnxi-kyy)dky

1o .
Ef(x,y,2) == [ Glkuorky2,70)0(k,)

e —j(kox+k,y) dky

(7)

1 e
+ E;j_mny(kxo,ky,z,zo)
.jy(ky)eﬂ(kxowrkyy)dky (8)

and

1 = -
Ez(xa y,Z) = E;f_oosz(kJm’ky’Z?ZO)JX(ky)

<o i Uexox+kyy) dky

1 e
* E/_szy(kxo: ky, Z,ZO)

.J;(ky)e_](kxox"'kvy)dky' (9)

II1. DERIVATION OF INTEGRAL EQUATIONS
A. Thin Conducting Strips

For very thin superconducting or normally conducting
strips, where the fields within the strip are approximately
uniform, the tangential components of the electric field at
the strip are given by

E(x,y,20) = ZJ(x,Y) (10)
where Z; is the surface impedance of the conductor, with
units ) /square, J is the equivalent surface current den-
sity, and the subscript ¢ denotes the components tangent
to the strip (i.e., the x and y components). The equiva-
lent surface current, J, is given by

J=[,dz =17, (11)
0

where J, is the uniform volume current density within the
strip and ¢ is the thickness of the strip. For a perfect
conductor Z, is equal to zero. For nonperfect conductors,
Z' is approximated as [2]
E, 1
Z; = t—l__ = ‘t s
f J, dz 7
O i

where o is the conductivity of the strip conductor. This
conductivity is real for normal conductors and complex
(0 = 0, — jo,) for superconductors. Equation (12) is ap-
propriate when the field variation within the strip is small.

To derive an integral equation in terms of the unknown
surface current, J, we enforce the boundary condition

i=xory

(12)
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(10) by testing it with a vector testing function F(y):

f:E,(x,y,zo) "F(y)dy= Z;f_me(x,y)'F(y) dy.
(13)

By alternately defining F(y) as J*(y)% and J(y)$, and
substituting (7) and (8) into (13), we obtain the following
set of coupled integral equations: ‘

f_w[éxx(kxO’ky’ZO) - Z;]j;C(ky)‘ch*(ky) dky
+ [ Gulkaorky 20) (K, T (k, ) dk, =0 (14)
and

f_w[éyy(kw’ky’ ZO)_ Z;]fy(ky)f))*(ky)dky

+f_wG‘yx(kxo,ky,zo)ﬁ(ky)f;k(ky)dky=o. (15)

In these expressions J* is the ~conjugate of J , and
G, (ko k,,2) is used to denote G, (k, &, Zg, 2).

B. Thick Conducting Strips

For thicker strips, where the thickness, ¢, is greater
than a few skin depths, §, or effective penetration depths,
A(T), the approximate boundary condition on the sur-
face of the strip is given by

E(x,y,2"%)=Z.J""(x,y) (16)

where J* and J? are the surface currents on the top and
bottom surfaces of the strip and Z, is the classical plane
wave surface impedance:

Et, _ [jwﬂ

fmJUl dz
0

7 =

s

1,2
] , i=xory. (17)

o

In this expression J, decreases exponentially with dis-
tance z into the conductor. If the thickness of the strip is
small compared with the other dimensions of the struc-
ture, z* and z% the positions of the top and bottom
surfaces of the strip, respectively, can be approximated as
z, (the middle of the strip). Thus, the currents J’ and J°
are collapsed into an equivalent surface current J(J = J*
+ J?). However, a difficulty in deriving an integral equa-
tion in terms of J directly from (16) is that the right-hand
side does not involve the equivalent current J, but rather
J¢ and J?, depending upon whether the observation point
is located on the top or bottom of the strip. Only in the
special case where the current on the bottom (top) side of
the strip is much greater than that on the top (bottom),
where J is approximately equal to the current on the
bottom (top), can we obtain an integral equation by
directly enforcing the boundary condition (16) on the
bottom (top) surface of the strip.

In order to model the strip as an equivalent surface
current at z,, an effective surface impedance, Z7, must
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be used. The boundary condition then becomes
E(x,y,20) = ZJ(x,y) (18)

where E, is the field produced by the equivalent surface
current, J.

To determine the effective surface impedance, the
complex power dissipated by the equivalent current sheet
should be the same as that for the actual strip conductor.
The complex power for the equivalent current sheet is

1
P.== [E(x,y)J*(x,y)dS (19)
27
where § denotes the surface of the equivalent current
sheet. Using (18), this becomes

1
pc=—z;/SJ(x,y)-J*(x,y)ds. (20)

2
Next, consider the actual strip conductor having different
surface currents on the top and bottom surfaces of the
strip. If it is assumed that the functional form of the
current is the same on the top and bottom surfaces of the
strip, with only an amplitude difference, the top and
bottom surface currents are related as

J'(x,y)=¢J(x,y) (21)
Jo(x,y) =(1=¢)J(x,y) (22)

where ¢ is the ratio of the current on the top surface of
the strip to the total surface current. The complex power
dissipated by the actual strip is then

1
- _ t . t*
P, 2ZSfSJ (x,y)-J"(x,y)dS

1 £
+ —Zstb(X,y)'Jb (x,y)dS (23)
2 s

which may be written as

1
P.=—pZ,[I(x.)T*(x.0)dS  (24)
2 s

where

p=v+(1-¢)> (25)

Comparing (20) with (24), the effective surface impedance
is determined as .

Z:=pZ,. (26)
For a general structure, one could obtain the factor p
using a quasi-static technique or some other method. For
the special case of a symmetric stripline, the currents on
the top and bottom of the strip are equal, so that ¢y = 0.5
and thus p = 0.5. Another limiting case is a microstrip
transmission line where the strip is close to the ground
plane. In this case |J*| < |J®|, so that y =0 and p=1.
An integral equation for the unknown equivalent sur-
face current, J, is derived by enforcing (18) using a testing
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function, F(y), obtaining

/_m E(x,y,z9) F(y)dy =pZSf:QJ(x,y) ‘F(y)dy.
(27)

By alternately defining F(y) as J¥(y)% and J}(y)§ and
substituting (7) and (8) into (27), we obtain the following
set of coupled integral equations:

f_‘ [G.x.x(kXO’ky7ZO)_sz]fx(ky)j:v*(kY)dky

+ [ Goykankyzo) (k)T (k) dky =0 (28)
and
f_w[éyy(kxo’ky720)_pZSJJ;(ky)fy*(ky)dky

+[_wc;~yx(kx0,ky,zo)ﬁ(ky)@*(ky)dky=o. (29)

These expressions are consistent with those obtained di-
rectly from (10) when p=1and Z,=Z_.

In this investigation we will assume that the width of
the conducting strip is small compared with the wave-
length; thus, the y component of the surface current will
be neglected. With this assumption, (28) and (29) are
reduced to the following integral equation:

[ [Gonllenos ki, 20) = 2] Tk, ) T (K, ) i, = 0.
(30)

Basic to this analysis is the derivation of the dyadic
Green’s function, G, which represents the electric field in
the mth layer caused by an arbitrarily oriented, unit
strength Hertzian electric dipole, also in the mth layer.
For this discussion, from (30), we note that only the ££
component is required. To formulate the electric field
Green’s function, Maxwell’s equations are transformed,
via a pair of Fourier transformations, into a pair of scalar
transmission line equations. These transmission line ex-
pressions are solved by enforcing the boundary conditions
at each interface separating the layers. This approach,
often referred to as the spectral domain immittance
method, has been presented in detail by others [6], [7] and
will not be presented here. In the Appendix, éxx is
presented in its final form.

IV. METHOD OF MOMENTS

The integral equation (30) is solved using the method of
moments. In this procedure the transverse current varia-
tion J (y) is approximated by

N

T(y)= X c,Tn(¥)

n=1

(31)

where the ¢,’s are constant expansion coefficients and the
J.,’s are expansion (basis) functions. Using this expansion,
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(30) is approximated as

N 0 o
Z Cnf_oo[Gxx(kxmky’ ZO)_ sz]

n=1
TE(k )T (k) dk, =0,  m=12,---,N (32)

where fx,(ky) is the Fourier transform of the expansion
function J_,(y). This equation is rewritten in the following
matrix form:

zc=0 (33)
where each element of the N X N matrix Z is defined as

Zmn = f_ [Gxx(kxm ky7 ZO) o sz] j;*m(ky)fm(ky) dky
(34)

and C is an N X1 vector containing the expansion coeffi-
cients. For nontrivial solutions of C, the matrix Z must be
singular. Hence, the propagation constant k,, is deter-

mined by solving
det[Z]=0. (35)
The solution of this equation is obtained by employing a
complex root finding algorithm, such as the secant method
or Muller’s method. The solutions for k, are assumed to
produce fields which are bounded in the directions trans-
verse to the direction of propagation; thus, the search is
restricted to the region k%7 <k,,, where k5% is the
largest wavenumber for the guided-wave modes of this
background structure [8]. This condition implicitly as-
sumes that there is no loss (i.e., real wavenumbers). A
small amount of loss results in complex wavenumbers
which are simply perturbations of the lossless values;
therefore, the prescribed search region still provides an
appropriate start for the root finding algorithm. This
condition also ensures that the poles of G, lie along the
imaginary k, axis in the lossless case; hence, the integra-
tion path in (34) is performed along the real k, axis.
Once the modal propagation constant has been found, we
determine the normalized current distribution by assign-
ing one of the current coefficients (c,) equal to unity and
solving for the remaining c,’s by solving the resulting
(N —1) X (N — 1) matrix equation which results from (33).
In this investigation, dominant mode propagation is
assumed, so that J (y) is an even function about y = 0.
The basis function is chosen as a pair of symmetric pulses;

with
_f/w, (y.,—w/4N)<lyl<(y,+w/4N)
‘]xn( y ) - { .
0, otherwise

(36)

where w is the width of the strip and y, = w(2n —1)/4N.
The Fourier transform of these offset pulses is given by

cos(y,k,) “in ( wk )

wk, /4 4N

Because of reciprocity, the Z matrix is symmetric. Fur-
thermore, because the basis functions are defined as pairs

of single pulses, the elements of the Z matrix can be

Tenl(key) = (37)
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Fig. 2. Superconducting transmission lines and equivalent model geometries used in the present analysis: (a) microstrip
and (b) stripline.

easily constructed from the 2N distinct Z,,,, values which
are obtained from (34) when using single pulse functions
for J,(y) and J,(y). These 2N distinct values corre-
spond to the 2 N distinct separations Ay ={(n— 1w /(2N)
(n=1---2N) between centers of the individual pulses.

V. Two-FLuib MoDEL

Since the exact mechanisms for high-temperature su-
perconductivity have yet to be conclusively determined,
there are no macroscopic theories which describe the
electrical properties of these materials below their critical
temperature, T,. The models which are most commonly
used for the low-temperature materials, the Mattis—
Bardeen equations and the two-fluid model, have been
applied to the high-temperature superconductors with
varying degrees of success. At the present time, the sim-
pler, two-fluid model seems to be more applicable to
these new materials in weak magnetic fields, and will be
used in this presentation. In our discussion, the magnetic
fields are assumed to be weak enough that the flux is
excluded from the interior of the superconductor (super-
conducting state). This model is readily extended, for
slightly stronger magnetic fields, into the mixed state
(partial penetration of magnetic flux) by adjusting the
model parameters. However, for stronger magnetic fields,
such that the superconductor is well within the mixed
state, the simple two-fluid model breaks down. In this
region, for high-T, superconductors, an accurate model
has not been developed.

The complex conductivity obtained from the two-fluid
model is expressed as

-

T
T,

c

j )(1—(T/Tc>“) (38)

( w,u/\ ff(O)

where o, is associated with the normal state conductivity
at T, and A (T) is the effective field penetration depth
as a function of temperature, 7, in degrees kelvin. There
are wide variances for these model parameters from sam-
ple to sample, and the temperature and frequency charac-
teristics of these quantities have not been conclusively
determined. The effective penetration depths are gener-
ally greater than calculated London penetration depths
for the high-7, materials owing to irregularities such as
crystalline anisotropy and misalignment, grain bound-
aries, impurities, and other phases of the superconducting
material. The effects of other loss mechanisms, such as
grain boundary losses and residual losses, are often in-
cluded in o,,. Despite these uncertainties the two-fluid
model is still a powerful empirical tool and gives impor-
tant qualitative results.

V1. NumericaL ResuULTS

We will demonstrate the effectiveness of our general
stripline and microstrip model by considering the slow
wave propagation of the dominant quasi-TEM modes
along these structures. The geometries that we will con-
sider are shown in Fig. 2. These structures are used since
they are nearly identical to the microstrips and striplines
that are commonly used to experimentally determine the
electrical properties of thin-film superconductors. In these
test structures, the superconducting thin films are de-
posited on several substrates, which are then sandwiched
together, as shown in the figure, to produce the final
transmission line. On occasion, normal conductors (e.g.
Cu, Au, and Ag) or low-temperature superconductors
(such as Nb) are used. In these situations, two-sided
deposition is possible and the substrate materials are
often different from those for the high-T, superconduc-
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tors. The formulation presented in the previous sections
is capable of analyzing these multiple-layer transmission
lines. In Fig. 2 we show diagrams of actual stripline and
microstrip geometries, with strip conductors of finite
thickness, ¢,, alongside the models for these geometries
used in this analysis. In these model geometries the strip
is represented by an equivalent surface current, J, of
width w as discussed previously. From extensive compar-
isons with rigorous solutions for infinitely wide, finite
thickness strip models, we have determined that the
proper location for the surface current, J, is such that the
distances between the ground planes and the strip sur-
face, b in Fig. 2(a) and b, and b, in Fig. 2(b), are
maintained. These modeling requirements are particu-
larly important for very thin transmission line structures.
Examples of the comparison with infinitely wide strip
models will be shown later. In addition, for the remainder
of our discussion we will assume that the thickness of
each superconductor layer is equal to ¢; therefore, 7, =
=t

To simplify our present discussion, we will neglect all
the losses associated with the dielectrics in the transmis-
sion line. It is true that for good superconducting thin-film
devices the total loss in the actual structure is often
dominated by the losses of the dielectric. For these exam-
ples, however, we are primarily interested in determining
the phase velocity of the dominant mode, which is only
weakly dependent upon this additional loss. In these
examples, the phase velocity is computed as v, = w /B,
where B is the real part of the complex propagation
constant k.

For the examples to be presented, we have determined,
through extensive numerical experimentation, that it is
necessary to use only a single pulse basis function to
represent -the transverse variation of the current for nar-
row strips. Furthermore, in these examples, the supercon-
ducting strips are very thin; therefore, Z! defined by (12)
is used in (30) with p=1. Unless otherwise specified,
the parameters for the two-fluid model will be those
for a typical laser ablated YBa,Cu;0, thin film, where
Aegt(0)=1500 A, 0, =2X%X10° S/m, and 7, =90 K. Also,
the temperature will be assumed to be 70 K and the
substrate materials are assumed to be LaAlO, with a
dielectric constant of 23.

To begin, we will compare the slow wave propagation
results obtained with our rigorous spectral-domain analy-
sis for a thin superconducting microstrip transmission line
(Fig. 2(a)) with those obtained by Swihart’s infinitely wide
strip model [1]. For this example, the width of the strip, w,
is equal to 10~ m and the substrate thickness is equal to
the thickness of the superconducting ground plane and
strip (b =t). The normalized phase velocities as a func-
tion of layer thickness, ¢, obtained from these models are
shown in Fig. 3. The computed phase velocities are nor-
malized by the factor ¢/ \/Z , where ¢ is the velocity of
light in free space and ¢, is the dielectric constant of the
substrate material, which is 23. This figure clearly demon-
strates the slowing of the phase velocity of the dominant
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Fig. 3. Comparison between present spectral-domain analysis and infi-

nite-strip-width model of Swihart [1] for a superconducting microstrip
transmission line. Model parameters: b=¢, w=10"> m, and e, =23
(Fig. 2(a)). :

microstrip transmission line mode caused by the kinetic
inductance associated with the superconducting current.
As the dimensions of the structure and the thicknesses of
the superconducting layers decrease, the fractional
amount of magnetic energy stored in the superconductors
increases, thereby, decreasing the phase velocity. The two
models agree very well up to t~10"7 m, where the
results start to diverge. This separation is due, primarily,
to two effects. First, the microstrip is dispersive; thus the
effective dielectric constant (phase velocity) of the struc-
ture, neglecting the kinetic inductance effects, varies with
strip width, w. This effect is not included in Swihart’s
model. Second, the surface impedance Z. given by (12),
used to model the material characteristics of the thin strip
in the spectral-domain formulation, starts to break down
when the fields within the strip depart substantially from
uniform. This occurs as the thickness of the strip ap-
proaches the effective penetration depth, A (7T):
-1/2

Aesi(T) = Aeff(o)[l— (T/ Tc)4] ’ : (39)
For this example (T/T,=70 K/90 K and A {(0)=
1500 A) A (70 K)=22%x10"7 m.

In Fig. 4 the effects of varying the width of this mi-
crostrip line are presented. We notice that the strip width
does affect the phase velocity, but these effects are due
primarily to the line dispersion, which is not related to the
conducting materials. This effect is manifest as the lateral
displacement of the individual responses. The spreading
of the curves as the layer thickness is decreased is a result
of the different kinetic inductance contributions for the
strips of different width. For this geometry (b < w), it is
readily apparent that the phase velocity of the structure is
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Fig. 4. Effect of strip width on the normalized phase velocity
(vp\/e_, /¢) for the high-T, superconducting microstrip line of Fig. 3.
Model parameters: b=t and €, = 23.
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Fig. 5. Effect of strip width on the normalized phase velocity
(vp\/; /¢) of the microstrip used for Fig. 4 with a PEC strip (z,=0)
and a high-7, ground plane. Model parameéters: b =1 and €, = 23.

a very weak function of the width of the microstrip line.
In order to separate the effects of the superconducting
strip and the superconducting ground plane on the ‘phase
velocity, consider the plots shown in Figs. 5, 6, and 7. To
generate these plots, the microstrip geometry of the previ-
ous example (Figs. 3 and 4) is used with the following
modifications: for the responses shown in Figs. 5 and 6,
the strip is a perfect electric conductor (PEC, Z;=0),
while the ground plane remains a superconductor, and for
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and a high-7, ground plane. Model parameters: b= 5%107° m and
€,=23.
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Fig. 7. Effect of strip width on ‘the normalized phasé velocity
(vp\/—e‘, /¢) of the microstrip used for Fig. 4 with a thin high-7, strip and
a PEC ground plane. Model parameters: b=1 and €, =23.

Fig. 7, the strip is a thin superconductor and the ground
plane is a PEC. As we see from Fig. 5, the kinetic
inductance contributions from the superconducting
ground plane do vary appreciably with strip width. This
results in a decreasing phase velocity with increasing strip
width. For this geometry (w /b = 1), the sensitivity of the
phase velocity to the PEC strip width is related to the
penetration of the fields through the superconductor into
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the dielectric backing the ground plane. For wide strips,
the response agrees with that predicted by the infinitely
wide strip model [1]; however, as the strip width decreases
the effects of the penetration through the ground plane
decrease. This is demonstrated in Fig. 6, which shows the
phase velocity for the microstrip geometry used for Fig. 5,
except that the substrate thickness is fixed at 5x107° m.
As the thickness of the superconducting ground plane is
increased the phase velocity increases, as expected; how-
ever, the dependence upon the strip width decreases. For
thick ground planes (¢ > A.y), the only width effect is,
apparently, that due to dispersion. Also notice that the
resulting phase velocities are significantly faster than those
for the corresponding completely superconducting mi-
crostrip (Fig. 4). However, when only the strip is super-
conducting, as shown in Fig. 7, the phase velocity is nearly
independent of the strip width, and agrees well with that
predicted by the infinitely wide strip model [1]. Therefore,
we conclude that for extremely thin (b < Ag) microstrip
transmission lines, for which w /b > 1, the dependence
of the phase velocity on the strip width is significant only
when there is penetfation through the ground plane.
When the ground plane is PEC, there is essentially no
variation with the strip width for these wide strips. Since
this width dependence is related to the penctration
through the ground plane, we expect that larger penetra-
tion depths will cause the phase velocities in Figs. 4 and 5
to increase even more with decreasing strip width. Also,
for these microstrip lines, the phase velocity increases as
the strip width decreases, which is opposite to the behav-
ior exhibited when using narrower strips on thicker sub-
strates. This effect will be discussed later using a stripline
example.

In Fig. 8, we demonstrate how the effective penetration
depth affects the phase velocity of the microstrip line
used in the previous examples. For this example, the strip
width is taken to be 10™* m. As these results indicate, the
phase velocity of the dominant mode along an extremely
thin microstrip line is a strong function of A (7). This
property is often used to determine A, from transmis-
sion line measurements [3], [9]. From the previous results,
we observe that the effect of the strip width is small for
these thin structures, where b < A4 and w /b > 1; there-
fore, only small errors will be produced if it is not ac-
counted for in the determination of A ;.

In Fig. 9, we compare the slow wave propagation re-
sults obtained from our spectral-domain analysis of a thin
superconducting stripline transmission line (Fig. 2(b)) with
those obtained by using the transverse resonance method,
which is based on transmission line techniques similar to
those discussed in the Appendix, to rigorously model the
stripline with an infinitely wide center strip of finite
thickness (Triplate model). The transverse resonance
method is used to find the dominate odd TM mode

propagation constant, from which the phase velocity is

obtained [10]. For this comparison, the width of the strip
is equal to 1X1073 m, b,=b,=1.5¢, and b, =b, =20
mils (5.1x10™* m). The dielectric constant for the sub-
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Fig. 8. Effect of A,(T) on the normalized phase velocity (UP‘/;, /¢)
for the high-7, superconducting microstrip line of Fig. 4. Model parame-
ters: b=t,e,=23, and w=10"*m.
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Fig. 9. Comparison between present spectral-domain analysis and infi-
nite-strip-width model (Triplate model) for a superconducting stripline
transmission line. Model parameters: b, = by =1.5¢, b; = b, = 20 mils,
w=10"3m, and ¢, =23 (Fig. 2(b)).

strates and ground plane backing layers is 23. This figure
shows the slowing of the phase velocity as the layer
thickness is decreased, and it also demonstrates the excel-
lent agreement between our stripline model and the rig-
orous model for the stripline with an infinitely wide,
finite-thickness center conductor.

The results of Figs. 4--8 for the microstrip are repeated,
in Figs. 10-14, for a similar stripline transmission line
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(up\/; /¢) for the stripline used for Fig. 10 with a PEC strip (Z; = 0)
and high-T, ground planes. Model parameters: b,=by;=15¢t and
€, =23,

(Fig. 2(b)). For this stripline, b, = b, = 1.5¢, where ¢ is the
thickness of the superconducting ground planes and strip,
and b,=b, =20 mils. The only apparent difference be-
tween the microstrip and stripline responses is that the

stripline has very little dispersion; therefore, the phase
~ velocity, neglecting the effects of the kinetic inductance,

does not change with strip width, w, unless there is
penetration through the ground planes (as in Figs. 11 and
12). Also, the phase velocities for the stripline are slightly
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Fig. 13. - Effect of strip width on the normalized phase velocity
(vp\/e_,_ /¢) for the stripline used for Fig. 10 with a thin high-T, strip and
PEC ground planes. Model parameters: b, = by =1.5¢ and €, = 23.

slower than those of the microstrip, owing to the addi-
tional superconducting ground plane.

A difficulty presently associated with obtaining such
slow phase velocities in the laboratory is associated with
the construction of high-7, superconducting microstrips
and striplines of such small dimensions. The commonly
used LaAlO; substrates are very brittle and must be on
the order of 10-20 mils thick to survive the necessary
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Fig. 15. Effect of strip width on the normalized phase velocity
(vp‘/e—, /¢) for the high-7,, superconducting stripline of Fig. 2(b). Model
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mechanical stresses received in the deposition process
and in the device construction. Infinite-width strip models
predict a negligible amount of slowing for transmission
lines of these dimensions. However, as the strip width is
reduced, substantial reductions in the phase velocity oc-
cur. This is demonstrated in Fig. 15 for a stripline with
dimensions by, =b, =b;=b,=b =20 mils (5.1x10™* m)
and superconducting ground planes and strip thicknesses
equal to 7. The substrate is assumed to be LaAlO, (e, =
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Fig. 16. Effect of strip width on the normalized attenuation constant
(a /ky) for the high-T, superconducting stripline of Fig. 2(b). Model
parameters: b, = b3 =20 muils and €, = 23.
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Fig. 17. Effect of A.4(T) on the normalized phase velocity (up\/g/c)
for the high-T, superconducting stripline of Fig. 2(b). Model parame-
ters: by = by =20 mils, e, =23, and w =10"% m.

23). (For the remainder of this section we will present -
results only for striplines; however, the results are directly
applicable to similarly constructed microstrip lines.) The
corresponding attenuation constants, normalized by the
free-space wavenumber, k,, are shown in Fig. 16. In this
example the phase velocity is a very strong function of the
strip dimensions, particularly for the cases where w /b <
1. For these thicker structures the effect of penetration
through the ground planes is minimal. Also, as expected,
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m, and o, = 5.8%107 S/m. For both cases the strip thickness is equal
to t. For the superconducting case, the ground plane thickness is ¢, and
for the copper case, the ground plane thickness is fixed at 20 mils.

the attenuation constant increases as the strip width de-
creases. Again, recall that dielectric losses have been
neglected in these examples. The corresponding plots for
a fixed strip width (w=10"% m) and variable A are
shown in Figs. 17 and 18. Appreciable changes in the
phase velocity occur for the range of A shown, and the
attenuation increases dramatically as the penetration
depth increases.

1563

Stripline

1.0E2 ‘ -
& :
© B3}
g "7
P :
o R
<
T 1084 L
5 OE B
g ©-8/C Grd. Plane|
4 -« Cu Grd. Plane |

LOBS bt

1.0E-9 1.0E-8 1.0E-7 1.0E-6
Layer Thickness, t (m)

Fig. 20. Comparison of normalized attenuation constant (a /k;) for
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10~* m, and o, = 5.8X 107 S/m. For both cases the strip thickness is
equal to t. For the superconducting case, the ground plane thickness is
t, and for the copper case the ground plane thickness is fixed at 20 mils.

The dependence of the phase velocity on the electrical
characteristics of the strip, for w /b <1, is demonstrated
by comparing the w = 107% m response in Figs. 15 and 16
with that for the equivalent stripline with the supercon-
ducting ground planes replaced by 20-mil-thick copper
(o =5.8%x107 S/m) ground planes. This comparison is
shown in Figs. 19 and 20. Note that the phase velocity is
effectively independent of the ground plane characteris-
tics for this stripline geometry since w /b <'1; yet, the
attenuation constant increases by nearly an order of mag-
nitude owing to the copper ground planes. For such a
narrow strip, assuming that the strip and the ground
planes have the same surface resistance, the relative con-
tribution to the total loss is much higher for the strip than
it is for the ground planes. However, since in this example
the surface resistance of the superconductor is much
smaller than that of the copper, the use of copper ground
planes increases the total loss dramatically.

VII. CoNCLUSIONS

We have presented a rigorous spectral-domain formula-
tion for the analysis of arbitrary multilayered stripline and
microstrip transmission lines. This formulation is used to
determine the complex modal propagation constants of
the structure, from which the phase velocity, attenuation
constant, and ¢ of the transmission line can be deter-
mined. Although derived in general, these techniques are
applied to analyze transmission lines constructed either
totally or partially of superconducting materials. The
characteristics of the superconductors are incorporated
into the analysis via the two-fluid model. Several numeri-
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cal examples are presented which demonstrate slow wave
propagation along superconducting microstrip and
stripline transmission lines. We observed how field pene-
tration through the superconducting ground planes may
have an influence on the phase velocity when the separa-
tion between the strip and the ground planes is less than
A and much less than the strip width. For thicker
substrates, particularly when the strip width is smaller

than the strip to ground plane separation, the effects of-

field penetration through the ground planes are minimal.
We have also demonstrated that it is possible to achieve
significant slow wave behavior for thick-substrate trans-
mission lines by using sufficiently small strip widths.

This formulation is sufficiently general to accurately
model actual stripline and microstrip transmission lines
used to characterize high-temperature superconducting
thin films. By correlating these modeling results with
measurements, we can determine many of the macro-
scopic electrical parameters and develop improved mod-
els for the high-T, materials.

APPENDIX

Using the spectral-domain immittance method (6], [7],
we obtain the xX component of the electric field dyadic
Green’s function for an arbitrarily oriented, unit strength
Hertzian electric dipole, assuming that the source and
observation points are in the same layer (mth layer), as [8]

k2 .
(z,z’)—;%GVTE(z,z’) (A1)

t

‘= kZ . ™
Go(2) == 3G

k?
where k? = k2 + k2. The voltage Green’s functions G
and GV are given as follows (with superscripts TE and
TM suppressed):

- Z, 4 . s
GV(Z,Z,)=—2*(€_]kz’"[z_zl+Q;(Z,Z’)) (A2)
where
QV(Z Z/) _ i (Fde —jk (2 +2)—22,,]
m > Dm m
+ T e TReml2zm =G L oA
re PPRenCm1=2m cos [ k(2 = 2')]) (A3)
and

D, =1-Tr*_ (A4)

with k,,, = (k% — k?)'/2, where k,, is the wavenumber in
layer m. The reflection coefficients T'¢ and ['¥ are given
by

le =2k Zm—1—Zm)

. Zi-7,
Fm=m, m=1,2,---,M (A5)
and
Ly~ L1
m=1,2,--- M (A6)

M=o
S 2 2

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 39, NO. 9, SEPTEMBER 1991

where M is the total number of layers. From transmission
line theory, the impedances Z¢ and Z“ are given by

d .
P Zy 1 tiZ, tan®,
1 N
"7 HIZE tan®, ]

m

-z

m=M-1,M-2,---,1 (A7)

and

zZy _+jZ, tan®
Zu

- , =2,3,-, M (A8
"Mz, iZE _tan®,, m (A8)

where &, =k _,(z, ,— z,). The wave impedances Z,, =
ZTE or ZIM are given by '

ZmM == (A9)
wE,, .
and
w
Ay (A10)
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